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TL;DR
This work first proposes the ABSA task in a conversational scenario, named DiaASQ, es-

tablishing a benchmark by providing an annotated dataset and extraction model.

Project Code && Data

▶ 1. Abstract
DiaASQ: We propose a new task called Conversational Aspect-based Sentiment Quadruplet Analysis
(DiaASQ), analyzing multi-party dialogues to identify and extract aspect-level sentiment quadruplets.
These quadruplets capture opinions expressed about specific aspects related to a particular target,
along with their corresponding sentiment polarity.
Keywords: Aspect-based Sentiment Analysis, Conversational Sentiment
Contribution:

• We pioneer the research of dialogue-level aspect-based sentiment analysis

• We release a dataset for the DiaASQ task in both Chinese and English languages, which is of high
quality and at a large scale.

• We introduce an end-to-end model to benchmark the DiaASQ task.
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Figure 1: Illustration of the conversational aspect-based sentiment quadruple analysis (DiaASQ). The dialogue utterances
produced by the corresponding speakers (marked at left) are organized into replying structure.

▶ 2. Dataset Construction
The dataset is constructed by systematically crawling tweets from digital bloggers, followed by a
series of preprocessing steps including filtering, normalizing, pruning, and annotating the collected
dialogues, resulting in a final corpus of 1,000 dialogues. Additionally, to enhance its multilingual
usability, the dataset is further translated and projected into the English language.
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Figure 2: The workflow of data acquisition and preprocesssing.

Table 1: Data statistics.

Dialogue Items Pairs Quadruples

Dia. Utt. Spk. Tgt. Asp. Opi. Pairt-a Pairt-o Paira-o Quad. Intra. Cross.

ZH

Total 1,000 7,452 4,991 8,308 6,572 7,051 6,041 7,587 5,358 5,742 4,467 1,275
Train 800 5,947 3,986 6,652 5,220 5,622 4,823 6,062 4,297 4,607 3,594 1,013
Valid 100 748 502 823 662 724 621 758 538 577 440 137
Test 100 757 503 833 690 705 597 767 523 558 433 125

EN

Total 1,000 7,452 4,991 8,264 6,434 6,933 5,894 7,432 4,994 5,514 4,287 1,227
Train 800 5,947 3,986 6,613 5,109 5,523 4,699 5,931 3,989 4,414 3,442 972
Valid 100 748 502 822 644 719 603 750 509 555 423 132
Test 100 757 503 829 681 691 592 751 496 545 422 123

Table 2: Main results of the DiaASQ task.

Span Match (F1) Pair Extraction (F1) Quadruple (F1)

T A O T-A T-O A-O Micro Iden.

ZH

CRF-Extract-Classify 91.11 75.24 50.06 32.47 26.78 18.90 8.81 9.25
SpERT 90.69 76.81 54.06 38.05 31.28 21.89 13.00 14.19
ParaPhrase / / / 37.81 34.32 27.76 23.27 27.98
Span-ASTE / / / 44.13 34.46 32.21 27.42 30.85

w/o PLM / / / 28.36 24.81 22.50 8.96 11.21
Ours 90.23 76.94 59.35 48.61 43.31 45.44 34.94 37.51

w/o PLM 85.52 75.21 47.15 34.72 26.16 30.73 14.21 17.55

EN

CRF-Extract-Classify 88.31 71.71 47.90 34.31 20.94 19.21 11.59 12.80
SpERT 87.82 74.65 54.17 28.33 21.39 23.64 13.07 13.38
ParaPhrase / / / 37.22 32.19 30.78 24.54 26.76
Span-ASTE / / / 42.19 30.44 45.90 26.99 28.34

w/o PLM / / / 27.26 20.63 44.62 13.84 14.17
Ours 88.62 74.71 60.22 47.91 45.58 44.27 33.31 36.80

w/o PLM 83.02 68.89 53.87 32.53 31.09 35.59 15.68 19.57

1

As depicted in Figure 3, our dataset is characterized by its multilingual and multi-sentiment at-
tributes within dialogue scenarios, making it one of the most comprehensive and challenging datasets
available for the ABSA task.

real-world environment ABSA has a broader ap-
plication under dialogue contexts. For example,
people are more likely to discuss certain products,
services, or politics on social media (e.g., Twit-
ter, Facebook, Weibo) in the form of multi-turn
and multi-party conversations. Also, it is prac-
tically meaningful to develop sentiment-support
dialog systems to facilitate the clinical diagnosis,
and treatment (Liu et al., 2021a). Unfortunately,
no effort has been dedicated to the research of a
holistic dialog-level ABSA.

In this paper, we consider filling the gap of
dialogue-level ABSA. We follow the line of re-
cent quadruple ABSA and present a task of conver-
sational aspect-based sentiment quadruple analy-
sis, namely DiaASQ. DiaASQ sets the goal to de-
tect the fine-grained sentiment quadruple of target-
aspect-opinion-sentiment given a conversation text,
i.e., an opinion of sentiment polarity has been ex-
pressed toward the target with respect to the aspect.
As exemplified in Fig. 1, multiple users (speak-
ers) on social media discuss different angles of a
product (i.e., ‘Xiaomi’ brand cellphone) in dialogue
threads of multiple turns. The task aims to extract
three quadruples over the dialog: (‘Xiaomi 11’,

‘WiFi module’, ‘bad design’, ‘negative’), (‘Xiaomi
11’, ‘battery life’, ‘not well’, ‘negative’) and (‘Xi-
aomi 6’, ‘screen quality’, ‘very nice’, ‘positive’).

To benchmark the task, we manually annotate a
large-scale DiaASQ dataset. We collect millions
of conversational corpus of source comments and
discussions closely related to electronic products
from Chinese social media. We hire well-trained
workers to explicitly label the DiaASQ data (i.e.,
the elements of quadruples, targets, aspects, opin-
ions, and sentiments) based on the crowd-sourcing
technique, which ensures a high quality of anno-
tations. Finally, we yield the dataset with 1,000
dialogue snippets in total with 7,452 utterances. To
facilitate the multilinguality of the benchmark, we
further translate and project the annotations into En-
glish. Data statistics show that each dialog involves
around 5 speakers, and 22.2% of the quadruples
are in the cross-utterance format.

Compared with previous single-text-based
ABSA, DiaASQ challenges in two main aspects.
First, DiaASQ includes four subtasks. Directly ap-
plying the existing best-performing graph-based
ABSA model to enumerate all possible target, as-
pect, and opinion terms could cause a combinato-
rial explosion. Second, the elements of a quadru-

ASTE TOWE MAMS CASA DiaASQ
Target ✗ ✗ ✗ ✓ ✓

Aspect ✓ ✓ ✓ ✗ ✓

Opinion ✓ ✓ ✓ ✓ ✓

Polarity ✓ ✗ ✓ ✓ ✓

Dialogue-level ✗ ✗ ✗ ✓ ✓

Multi-sentiment ✗ ✗ ✓ ✗ ✓

Multilingual ✗ ✗ ✗ ✗ ✓

Table 1: A comparison between our DiaASQ dataset
and existing popular ABSA datasets, including: ASTE
(Peng et al., 2020), TOWE (Fan et al., 2019), MAMS
(Jiang et al., 2019), and CASA (Song et al., 2022).

ple are scattered around the whole conversation
due to the complex replying structure, which re-
quires the model to do cross-utterance extraction.
To solve these challenges, we present an end-to-
end DiaASQ framework. Specifically, based on
the grid-filling method (Wu et al., 2020), we re-
design the tagging scheme to fulfill the four sub-
tasks in one shot effectively. Moreover, during
the dialogue text encoding, we additionally model
the dialogue-specific representations for utterance
interaction and meanwhile encode the relative dis-
tance as cross-utterance features. Experiments on
the DiaASQ data indicate that our model shows sig-
nificant superiority than several strong baselines.

To sum up, this work contributes in threefold:
• We pioneer the research of dialogue-level

aspect-based sentiment analysis. Specifically,
we introduce a conversational aspect-based
sentiment quadruple analysis (DiaASQ) task.

• We release a dataset for the DiaASQ task in
both Chinese and English languages, which is
of high quality and at a large scale.

• We introduce a model to benchmark the Di-
aASQ task. Our method solves the task
end-to-end and meanwhile effectively learns
the dialogue-specific features for better cross-
utterance sentiment quadruple extraction.

2 Related Work
2.1 Fine-grained Sentiment Analysis
All the existing ABSA tasks and their derivations
revolve around predicting several elements or com-
binations: aspect term, sentiment polarity, opin-
ion term, aspect category1, target. The initial
ABSA task aims to classify the sentiment polar-
ities given aspects (Tang et al., 2016; Fan et al.,
2018; Li et al., 2019). Later, a wide range of new
compound ABSA-related tasks is proposed, such

1For example, the aspect ‘WiFi module’ in Fig. 1 belongs
to the hardware category).

Figure 3: A comparison between our DiaASQ dataset and
existing popular ABSA datasets.
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Figure 4: Tagging scheme for quadruple extraction.

head and tail of a target, aspect, and opinion term,
respectively. For example, the tgt between ‘Xiaomi’
and ‘6’ denotes a target term of ‘Xiaomi 6’.

• Entity Pair Labels: We then need to link dif-
ferent types of terms together as a combination. To
represent the relation between entities, we devise
two labels: h2h and t2t, both of which align the
head and tail tokens between a pair of entities in
two types. For example, the head words of ‘Xi-
aomi’ (target) and ‘screen’ (aspect) is connected
with h2h, while the tail words of ‘6’ (target) and
‘quality’ (aspect) is connected with t2t. By labeling
a chain of term pairs in different types, we form a
triplet of (tk, ak, ok).

• Sentiment Polarity Labels: By adding a sen-
timent category label pk, we then form a quad
qk=(tk, ak, ok, pk). Since the target and opinion
terms together determine a unique sentiment, we
assign the category label between the heads and
tails of these two terms, as shown in Fig. 4.

5 DiaASQ Model

We present a DiaASQ model to accomplish the
task based on the above grid-tagging label scheme.
Fig. 5 shows the overall architecture.

5.1 Base Encoding

We adopt a pre-trained language model (PLM), e.g.,
BERT (Devlin et al., 2019), to encode the dialogue
utterances. However, the length of a whole dia-
logue may far exceed the max length that BERT
can accept. We thus encode each utterance with a
separate PLM one by one. We use the [CLS] and
[SEP] tokens to separate each utterance ui.
u

′
i =< [CLS], w1, · · · , wm, [SEP] > , (1)

Hi = hcls,h1, · · · ,hm,hsep = PLM(u
′
i) , (2)

where hm is the contextual representation of wm.

5.2 Dialogue-specific Multi-view Interaction

To strengthen the awareness of the dialogue dis-
course, we then introduce a multi-view inter-
action layer to learn the dialogue-specific fea-
tures. This layer is built upon the multi-head self-
attention (Vaswani et al., 2017). Inspired by (Shen
et al., 2021; Zhao et al., 2022), we use three types of
features: dialogue threads, speakers, and replying.
Specifically, we realize the idea by constructing at-
tention masks M c that carry the bias of such prior
features, controlling the interactions between to-
kens. And c ∈ {Th, Sp,Rp} represents different
types of token interaction, i.e., thread, speaker, and
replying, respectively.

Hc = Masked-Att(Q,K,V ,M c)

= Softmax(
(QT ·K)⊙M c

√
d

) · V ,
(3)

where Q=K=V =H ∈ RN×d is the representation
of the whole dialogue sequence obtained by con-
catenating token representations of each utterance
(Hi in Eq. (2)), N is the token-level length of D,
and ⊙ is element-wise production. The value of
M c ∈ RN×N is defined as follows:

• Thread Mask: MTh
ij =1 if the ith and jth

token belong to the same dialogue thread.

• Speaker Mask: MSp
ij =1 if the ith and jth

token are derived from the same speaker.

• Reply Mask: MRp
ij =1 if the two utterances

containing the ith and jth token respectively have
a replying relation.

We then conduct Max-Pooling over the masked
representations, followed by a tag-wise MLP layer
to yield the final feature representation vc

i :
Hf = Max-Pooling(HTh,HSp,HRp) , (4)

vr
i =MLPr(hf

i ) , (5)
where r ∈ {tgt, · · · , h2h, · · · , pos, · · · , ϵent, · · · }
indicates a specific label, and ϵent denotes the
non-relation label in the entity boundary matrix.

5.3 Integrating Dialogue Relative Distance

Limited by the PLM, we can only encode each ut-
terance separately, potentially hurting the conversa-
tional discourse. To compensate for it, we consider
fusing the Rotary Position Embedding (RoPE) (Su
et al., 2021) into token representations. RoPE dy-
namically encodes the relative distance globally
between utterances at the dialogue level. Introduc-
ing such distance information can help guide better

Figure 4: Tagging scheme for quadruple extraction.

▶ 3. Model Framework
To benchmark the task, we propose an end-to-end framework for DiaASQ extraction, which involves
four main steps:

• Encoding the original dialogue text using pre-trained language models.

• Enhancing dialogue structure within threads, speakers, and replies information through multi-view
interactions.

• Enhancing relative position between token pairs using Rotational Position Encoding (RoPE).

• Introducing a novel grid-based schema to encode and decode quadruplets with token-pair relations.
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Figure 5: The overall framework of our DiaASQ model. First, the base encoder learns base contextual represen-
tations for the input dialogue texts. The multi-view interaction layer then aggregates dialogue-specific feature
representations, such as the threads, speakers, and replying information. We further fuse the Rotary Position
Embedding (RoPE), where the relative dialogue distance information helps guide better discourse understanding.
Finally, the system decodes all the quadruples based on the grid-tagging labels.

discourse understanding.
ur
i = R(θ, i)vr

i , (6)
where R(θ, i) is a positioning matrix parameter-
ized by θ and the absolute index i of vr

i .

5.4 Quadruple Decoding

Based on each tag-wise representation ur
i , we fi-

nally calculate the unary score between any token
pair in terms of label r:

srij = (ur
i )

Tur
j , (7)

where srij is the probability that the relation label
between wi and wj is r. Then we put a softmax
layer over all elements in each matrix to determine
the relation label r. For example, the probability of
entity boundary matrix can be obtained via:

pentij = Softmax([sϵent
ij ; stgtij ; saspij ; sopiij ]) . (8)

Obtaining all the labels in the grid, we decode
all the quadruples based on the rules stated in § 4.

5.5 Learning

The training target is to minimize the cross-entropy
loss of each subtask:

Lk = − 1

G ·N2

G∑

g=1

N∑

i=1

N∑

j=1

αk ykij log(p
k
ij) , (9)

where k ∈ {ent, pair, pol} indicates a subtask, N
is the total token length in a dialogue, and G is the
total training data instances. ykij is ground-truth
label, pkij is the prediction. The label types (stated
in Section 4) are imbalanced. Thus we apply a
tag-wise weighting vector αk to counteract this.
We then add up all three loss items as the final one:

L = Lent + βLpair + ηLpol . (10)

6 Experiment
6.1 Settings
We conduct experiments on our DiaASQ dataset to
evaluate the efficacy of our proposed model. We
mainly measure the performances in terms of three
angles: 1) span match: the boundary of three types
of term spans; 2) pair extraction: the detection of
span pair, i.e., Target-Aspect, Aspect-Opinion and
Target-Opinion; 3) quadruple extraction: recogniz-
ing the full quad of DiaSAQ task. We use the exact
F1 as the metric: for span, a correct prediction
should match both the left and right boundaries;
for pair, match both two spans and the relation; for
quad, match all four elements exactly. The perfor-
mance of quadruple extraction is our main focus.
We thus take the micro F1 and identification F1
respectively for measurements, where the micro F1
measures the whole quad, including the sentiment
polarity. In contrast, identification F1 (Barnes et al.,
2021) does not distinguish the polarity.

We take the Chinese-Roberta-wwm-base (Cui
et al., 2021) and Roberta-Large (Liu et al., 2019)
as our base encoders for the Chinese and English
datasets, respectively. We put a 0.2 dropout rate on
the BERT output representations. MLP in Eq. (5)
has a 64-d hidden size. The testing results are
given by the models tuned on the developing set.
All experiments take five different random seeds,
and the final scores are averaged over five runs.

As no prior method is deliberately designed
for DiaASQ, we consider re-implementing sev-
eral strong-performing systems closely related to
the task as our baselines, including CRF-Extract-
Classify (Cai et al., 2021), SpERT (Eberts and
Ulges, 2020) Span-ASTE (Xu et al., 2021) and

Figure 5: The overall framework of our DiaASQ model.

▶ 4. Experiments
We conducted experiments on two datasets and arrived at the following conclusions:

• Our model demonstrates superior performance compared to other models, providing evidence of
its superiority over baselines.

• However, the absolute scores for quadruple extraction remain relatively low, highlighting the chal-
lenges of our task.

Table 1: Data statistics.

Dialogue Items Pairs Quadruples

Dia. Utt. Spk. Tgt. Asp. Opi. Pairt-a Pairt-o Paira-o Quad. Intra. Cross.

ZH

Total 1,000 7,452 4,991 8,308 6,572 7,051 6,041 7,587 5,358 5,742 4,467 1,275
Train 800 5,947 3,986 6,652 5,220 5,622 4,823 6,062 4,297 4,607 3,594 1,013
Valid 100 748 502 823 662 724 621 758 538 577 440 137
Test 100 757 503 833 690 705 597 767 523 558 433 125

EN

Total 1,000 7,452 4,991 8,264 6,434 6,933 5,894 7,432 4,994 5,514 4,287 1,227
Train 800 5,947 3,986 6,613 5,109 5,523 4,699 5,931 3,989 4,414 3,442 972
Valid 100 748 502 822 644 719 603 750 509 555 423 132
Test 100 757 503 829 681 691 592 751 496 545 422 123

Table 2: Main results of the DiaASQ task.

Span Match (F1) Pair Extraction (F1) Quadruple (F1)

T A O T-A T-O A-O Micro Iden.

ZH

CRF-Extract-Classify 91.11 75.24 50.06 32.47 26.78 18.90 8.81 9.25
SpERT 90.69 76.81 54.06 38.05 31.28 21.89 13.00 14.19
ParaPhrase / / / 37.81 34.32 27.76 23.27 27.98
Span-ASTE / / / 44.13 34.46 32.21 27.42 30.85

w/o PLM / / / 28.36 24.81 22.50 8.96 11.21
Ours 90.23 76.94 59.35 48.61 43.31 45.44 34.94 37.51

w/o PLM 85.52 75.21 47.15 34.72 26.16 30.73 14.21 17.55

EN

CRF-Extract-Classify 88.31 71.71 47.90 34.31 20.94 19.21 11.59 12.80
SpERT 87.82 74.65 54.17 28.33 21.39 23.64 13.07 13.38
ParaPhrase / / / 37.22 32.19 30.78 24.54 26.76
Span-ASTE / / / 42.19 30.44 45.90 26.99 28.34

w/o PLM / / / 27.26 20.63 44.62 13.84 14.17
Ours 88.62 74.71 60.22 47.91 45.58 44.27 33.31 36.80

w/o PLM 83.02 68.89 53.87 32.53 31.09 35.59 15.68 19.57

1

In-depth Analysis: We conduct an in-depth analysis and gain a deep understanding of the strengths
of our method:

• Our model excels in cross-utterance quadruple extraction, outperforming baselines even for high
cross-utterance levels, benefiting from dialogue-specific interaction features and RoPE.

• Dialogue-level distance encoding enhances conversational discourse understanding compared to
alternatives such as relative position encoding and global position encoding.

ZH EN

Overall Intra-Utt. Inter-Utt. Overall Intra-Utt. Inter-Utt.
Ours 34.94 37.95 23.21 33.31 37.65 15.76
w/o All-Interaction 34.04(↓0.90) 37.40(↓0.55) 20.95(↓2.26) 32.51 (↓0.80) 37.23 (↓0.32) 12.98 (↓2.78)

w/o Speaker 34.43(↓0.51) 37.82(↓0.13) 21.90(↓1.31) 33.06 (↓0.25) 37.68 (↑0.03) 14.20 (↓1.56)

w/o Thread 34.52(↓0.42) 37.61(↓0.34) 22.62(↓0.59) 33.09 (↓0.22) 37.33 (↓0.32) 15.09 (↓0.67)

w/o Reply 34.26(↓0.68) 37.06(↓0.89) 22.91(↓0.30) 32.82 (↓0.49) 37.46 (↓0.21) 13.50 (↓2.26)

w/o RoPE 33.10(↓1.84) 36.42(↓1.53) 20.22(↓2.99) 31.59 (↓1.72) 36.44 (↓1.21) 12.22 (↓3.54)

w/o Lab.Wei. (αk) 33.52(↓1.42) 36.63(↓1.32) 20.93(↓2.28) 32.54 (↓0.77) 37.06 (↓0.59) 13.50 (↓2.26)

Table 4: Ablation results (Micro F1). ‘w/o All-Interaction’: removing all three multi-view interaction items.
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Figure 6: results on different cross-utterance levels.

weighting mechanism used for task learning is also
much crucial. This finding is reasonable because
the labels of different types in the grid among the
whole dialogue are imbalanced and sparse, e.g., the
positive tags are far less than the negative ones (i.e.,
ϵent). Label-wise weighting helps effectively solve
the label imbalance issue.

6.4 Further Analysis
In this section, we consider diving into the model
performances and carry on an in-depth analysis to
better understand the strengths of our method.
Cross-utterance Quadruple Extraction. Earlier
in Table 3, we verify the superiority of our model.
We mainly credit its capability to effectively model
the cross-utterance features. Here we directly ex-
amine this attribute by observing the performances
under different levels of the cross-utterance quad
extraction. As plotted in Fig. 6, we observe the
patterns that the more utterances quadruple across,
the lower the performances all models can achieve.
Especially when the cross-utterance level ≥3, the
baseline systems fail to recognize any single quad.
Nevertheless, our system can still well resolve
the challenge, even in case of cross-≥3-utterance.
Also, by comparing two of our ablated models, we
learn that the dialogue-specific interaction features
are more beneficial for handling the super-long-
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Figure 7: Influences of using difference distance-
encoding methods.

distance cross-utterance. But the RoPE that carries
discourse information contributes more to the short-
range case (i.e., cross-1-utterance).

Impact of Dialogue-level Distance Encoding. We
equip our framework with dialogue-level relative
distance embeddings (i.e., RoPE, a dynamic posi-
tioning feature), so as to enhance conversational
discourse understanding. Here we study the in-
fluence of using different dialogue-level distance
embeddings. We consider two other alternative so-
lutions: 1) Relative position encoding, which is a
type of dense embedding of relative distances of
utterance; We directly add the embedding to the
token relation probability vector in Eq. (8) to intro-
duce this information. 2) Global position encoding,
which is an absolute position embedding of the to-
ken. We utilize the global position by adding to the
token representation vr

i in Eq. (5).
We study the performance changes on quadruple

extraction by using the alternatives, as shown in
Fig. 7. We see that the Global position strategy
shows the lowest helpfulness consistently, com-
pared to the relative position methods. This finding
suggests that relative distance may be more helpful
in modeling the conversation discourse. Moreover,
the RoPE gives the best usefulness, especially un-
der inter-utterance cases. Intuitively, such dynamic
position information offers more flexible bridging
knowledge for easing the long-range dependence is-

Figure 6: Results on different cross-utterance levels.

ZH EN

Overall Intra-Utt. Inter-Utt. Overall Intra-Utt. Inter-Utt.
Ours 34.94 37.95 23.21 33.31 37.65 15.76
w/o All-Interaction 34.04(↓0.90) 37.40(↓0.55) 20.95(↓2.26) 32.51 (↓0.80) 37.23 (↓0.32) 12.98 (↓2.78)

w/o Speaker 34.43(↓0.51) 37.82(↓0.13) 21.90(↓1.31) 33.06 (↓0.25) 37.68 (↑0.03) 14.20 (↓1.56)

w/o Thread 34.52(↓0.42) 37.61(↓0.34) 22.62(↓0.59) 33.09 (↓0.22) 37.33 (↓0.32) 15.09 (↓0.67)

w/o Reply 34.26(↓0.68) 37.06(↓0.89) 22.91(↓0.30) 32.82 (↓0.49) 37.46 (↓0.21) 13.50 (↓2.26)

w/o RoPE 33.10(↓1.84) 36.42(↓1.53) 20.22(↓2.99) 31.59 (↓1.72) 36.44 (↓1.21) 12.22 (↓3.54)

w/o Lab.Wei. (αk) 33.52(↓1.42) 36.63(↓1.32) 20.93(↓2.28) 32.54 (↓0.77) 37.06 (↓0.59) 13.50 (↓2.26)

Table 4: Ablation results (Micro F1). ‘w/o All-Interaction’: removing all three multi-view interaction items.
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Figure 6: results on different cross-utterance levels.

weighting mechanism used for task learning is also
much crucial. This finding is reasonable because
the labels of different types in the grid among the
whole dialogue are imbalanced and sparse, e.g., the
positive tags are far less than the negative ones (i.e.,
ϵent). Label-wise weighting helps effectively solve
the label imbalance issue.

6.4 Further Analysis
In this section, we consider diving into the model
performances and carry on an in-depth analysis to
better understand the strengths of our method.
Cross-utterance Quadruple Extraction. Earlier
in Table 3, we verify the superiority of our model.
We mainly credit its capability to effectively model
the cross-utterance features. Here we directly ex-
amine this attribute by observing the performances
under different levels of the cross-utterance quad
extraction. As plotted in Fig. 6, we observe the
patterns that the more utterances quadruple across,
the lower the performances all models can achieve.
Especially when the cross-utterance level ≥3, the
baseline systems fail to recognize any single quad.
Nevertheless, our system can still well resolve
the challenge, even in case of cross-≥3-utterance.
Also, by comparing two of our ablated models, we
learn that the dialogue-specific interaction features
are more beneficial for handling the super-long-
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Figure 7: Influences of using difference distance-
encoding methods.

distance cross-utterance. But the RoPE that carries
discourse information contributes more to the short-
range case (i.e., cross-1-utterance).

Impact of Dialogue-level Distance Encoding. We
equip our framework with dialogue-level relative
distance embeddings (i.e., RoPE, a dynamic posi-
tioning feature), so as to enhance conversational
discourse understanding. Here we study the in-
fluence of using different dialogue-level distance
embeddings. We consider two other alternative so-
lutions: 1) Relative position encoding, which is a
type of dense embedding of relative distances of
utterance; We directly add the embedding to the
token relation probability vector in Eq. (8) to intro-
duce this information. 2) Global position encoding,
which is an absolute position embedding of the to-
ken. We utilize the global position by adding to the
token representation vr

i in Eq. (5).
We study the performance changes on quadruple

extraction by using the alternatives, as shown in
Fig. 7. We see that the Global position strategy
shows the lowest helpfulness consistently, com-
pared to the relative position methods. This finding
suggests that relative distance may be more helpful
in modeling the conversation discourse. Moreover,
the RoPE gives the best usefulness, especially un-
der inter-utterance cases. Intuitively, such dynamic
position information offers more flexible bridging
knowledge for easing the long-range dependence is-

Figure 7: Influences of using difference distance-encoding
methods.


